Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Br J Pharmacol ; 180 Suppl 2: S145-S222, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123150

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos/química , Ligantes , Receptores Acoplados a Proteínas G , Bases de Dados Factuais
2.
Purinergic Signal ; 18(4): 515-528, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018534

RESUMO

Pulmonary vascular tone is modulated by nucleotides, but which P2 receptors mediate these actions is largely unclear. The aim of this study, therefore, was to use subtype-selective antagonists to determine the roles of individual P2Y receptor subtypes in nucleotide-evoked pulmonary vasodilation and vasoconstriction. Isometric tension was recorded from rat intrapulmonary artery rings (i.d. 200-500 µm) mounted on a wire myograph. Nucleotides evoked concentration- and endothelium-dependent vasodilation of precontracted tissues, but the concentration-response curves were shallow and did not reach a plateau. The selective P2Y2 antagonist, AR-C118925XX, inhibited uridine 5'-triphosphate (UTP)- but not adenosine 5'-triphosphate (ATP)-evoked relaxation, whereas the P2Y6 receptor antagonist, MRS2578, had no effect on UTP but inhibited relaxation elicited by uridine 5'-diphosphate (UDP). ATP-evoked relaxations were unaffected by the P2Y1 receptor antagonist, MRS2179, which substantially inhibited responses to adenosine 5'-diphosphate (ADP), and by the P2Y12/13 receptor antagonist, cangrelor, which potentiated responses to ADP. Both agonists were unaffected by CGS1593, an adenosine receptor antagonist. Finally, AR-C118925XX had no effect on vasoconstriction elicited by UTP or ATP at resting tone, although P2Y2 receptor mRNA was extracted from endothelium-denuded tissues using reverse transcription polymerase chain reaction with specific oligonucleotide primers. In conclusion, UTP elicits pulmonary vasodilation via P2Y2 receptors, whereas UDP acts at P2Y6 and ADP at P2Y1 receptors, respectively. How ATP induces vasodilation is unclear, but it does not involve P2Y1, P2Y2, P2Y12, P2Y13, or adenosine receptors. UTP- and ATP-evoked vasoconstriction was not mediated by P2Y2 receptors. Thus, this study advances our understanding of how nucleotides modulate pulmonary vascular tone.


Assuntos
Artéria Pulmonar , Vasodilatação , Ratos , Animais , Uridina Trifosfato/farmacologia , Difosfatos/farmacologia , Trifosfato de Adenosina/farmacologia , Difosfato de Uridina/farmacologia , Uridina/farmacologia , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y2
3.
Purinergic Signal ; 18(2): 155, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35138527
4.
Pediatr Pulmonol ; 57(4): 965-975, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35084122

RESUMO

BACKGROUND: Antimicrobial stewardship is a systematic effort to change prescribing attitudes that can provide benefit in the provision of care to persons with cystic fibrosis (CF). Our objective was to decrease the unwarranted use of broad-spectrum antibiotics and assess the impact of an empiric antibiotic algorithm using quality improvement methodology. METHODS: We assembled a multidisciplinary team with expertise in CF. We assessed baseline antibiotic use for treatment of pulmonary exacerbation (PEx) and developed an algorithm to guide empiric antibiotic therapy. We included persons with CF admitted to Children's National Hospital for treatment of PEx between January 2017 and March 2020. Our primary outcome measure was reducing unnecessary broad-spectrum antibiotic use, measured by use consistent with the empiric antibiotic algorithm. The primary intervention was the initiation of the algorithm. Secondary outcomes included documentation of justification for broad-spectrum antibiotic use and use of infectious disease (ID) consult. RESULTS: Data were collected from 56 persons with CF who had a total of 226 PEx events. The mean age at first PEx was 12 (SD 6.7) years; 55% were female, 80% were white, and 29% were Hispanic. After initiation of the algorithm, the proportion of PEx with antibiotic use consistent with the algorithm increased from 46.2% to 79.5%. Documentation of justification for broad-spectrum antibiotics increased from 56% to 85%. Use of ID consults increased from 17% to 54%. CONCLUSION: Antimicrobial stewardship initiatives are beneficial in standardizing care and fostering positive working relationships between CF pulmonologists, ID physicians, and pharmacists.


Assuntos
Fibrose Cística , Algoritmos , Antibacterianos/uso terapêutico , Criança , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Feminino , Hospitalização , Humanos , Pulmão , Masculino , Adulto Jovem
6.
Br J Pharmacol ; 178 Suppl 1: S157-S245, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529831

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15539. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos , Bases de Conhecimento , Ligantes , Receptores Acoplados a Proteínas G
7.
Auton Neurosci ; 235: 102860, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34340045

RESUMO

Geoff Burnstock created an outstanding scientific legacy that includes identification of adenosine 5'-triphosphate (ATP) as an inhibitory neurotransmitter in the gut, the discovery and characterisation of a large family of purine and uridine nucleotide-sensitive ionotropic P2X and metabotropic P2Y receptors and the demonstration that ATP is as an excitatory cotransmitter in autonomic nerves. The evidence for cotransmission includes that: 1) ATP is costored with noradrenaline in synaptic vesicles in postganglionic sympathetic nerves innervating smooth muscle tissues, including the vas deferens and most arteries. 2) When coreleased with noradrenaline, ATP acts at postjunctional P2X1 receptors to elicit depolarisation, Ca2+ influx, Ca2+ sensitisation and contraction. 3) ATP is also coreleased with acetylcholine from postganglionic parasympathetic nerves innervating the urinary bladder, where it stimulates postjunctional P2X1 receptors, and a second, as yet unidentified site to evoke contraction of detrusor smooth muscle. In both systems membrane-bound ecto-enzymes and soluble nucleotidases released from postganglionic nerves dephosphorylate ATP and so terminate its neurotransmitter actions. Currently, the most promising potential area of therapeutic application relating to cotransmission is treatment of dysfunctional urinary bladder. This family of disorders is associated with the appearance of a purinergic component of neurogenic contractions. This component is an attractive target for drug development and targeting it may be a rewarding area of research.


Assuntos
Músculo Liso , Sistema Nervoso Parassimpático , Trifosfato de Adenosina , Vias Autônomas , Humanos , Masculino , Contração Muscular , Norepinefrina , Bexiga Urinária , Ducto Deferente
8.
Neurogastroenterol Motil ; 33(7): e14101, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33619847

RESUMO

BACKGROUND: Gastrointestinal smooth muscle relaxation is accomplished by activation of P2Y1 receptors, therefore this receptor plays an important role in regulation of gut motility. Recently, BPTU was developed as a negative allosteric modulator of the P2Y1 receptor. Accordingly, the aim of this study was to assess the effect of BPTU on purinergic neurotransmission in pig and human gastrointestinal tissues. METHODS: Ca2+ imaging in tSA201 cells that express the human P2Y1 receptor, organ bath and microelectrodes in tissues were used to evaluate the effects of BPTU on purinergic responses. KEY RESULTS: BPTU concentration dependently (0.1 and 1 µmol L-1 ) inhibited the rise in intracellular Ca2+ evoked by ADP in tSA201 cells. In the pig small intestine, 30 µmol L-1 BPTU reduced the fast inhibitory junction potential by 80%. Smooth muscle relaxations induced by electrical field stimulation were reduced both in pig ileum (EC50  = 6 µmol L-1 ) and colon (EC50  = 35 µmol L-1 ), but high concentrations of BPTU (up to 100 µmol L-1 ) had no effect on human colonic muscle. MRS2500 (1 µmol L-1 ) abolished all responses. Finally, 10 µmol L-1 ADPßS inhibited spontaneous motility and this was partially reversed by 30 µmol L-1 BPTU in pig, but not human colonic tissue and abolished by MRS2500 (1 µmol L-1 ). CONCLUSIONS & INFERENCES: BPTU blocks purinergic responses elicited via P2Y1 receptors in cell cultures and in pig gastrointestinal tissue. However, the concentrations needed are higher in pig tissue compared to cell cultures and BPTU was ineffective in human colonic tissue.


Assuntos
Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Músculo Liso/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/metabolismo , Animais , Técnicas de Cultura de Células , Humanos , Camundongos , Técnicas de Cultura de Órgãos , Suínos
9.
Purinergic Signal ; 17(1): 1, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33543378
10.
Purinergic Signal ; 17(1): 9-23, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33527235

RESUMO

P2 receptors are present in virtually all tissues and cell types in the human body, and they mediate the physiological and pharmacological actions of extracellular purine and pyrimidine nucleotides. They were first characterised and named by Geoff Burnstock in 1978, then subdivided into P2X and P2Y purinoceptors in 1985 on the basis of pharmacological criteria in functional studies on native receptors. Molecular cloning of receptors in the 1990s revealed P2X receptors to comprise seven different subunits that interact to produce functional homo- and heterotrimeric ligand-gated cation channels. A family of eight P2Y G protein-coupled receptors were also cloned, which can form homo- and heterodimers. Deep insight into the molecular mechanisms of agonist and antagonist action has been provided by more recent determination of the tertiary and quaternary structures of several P2X and P2Y receptor subtypes. Agonists and antagonists that are highly selective for individual subtypes are now available and some are in clinical use. This has all come about because of the intelligence, insight and drive of the force of nature that was Geoff Burnstock.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
11.
Biochem Pharmacol ; 187: 114408, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33444568

RESUMO

Extracellular purine and pyrimidine nucleotides produce their pharmacological effects through P2 receptors. These were first named by Geoff Burnstock in an extensive review in 1978. They were then subdivided into P2X and P2Y purinoceptors by Burnstock and Kennedy in 1985, based on applying pharmacological criteria to data generated by functional studies in smooth muscle tissues. Several other P2 subtypes, P2T, P2Z, P2U and P2D were subsequently identified in the following years, again using pharmacological criteria. The number and identity of subtypes were clarified and simplified by the cloning of seven ATP-sensitive ligand-gated ion channel subunits and eight adenine and/or uracil nucleotide-sensitive G protein-coupled receptors from 1993 onwards. The former were all classified as members of the P2X receptor family and the latter as members of the P2Y receptor family. More recently, high resolution imaging of the tertiary and quaternary structures of several P2X and P2Y receptor subtypes has provided a much greater understanding of how and where agonists and antagonists bind to the receptors and how this leads to changes in receptor conformation and activity. In addition, medicinal chemistry has produced a variety of subtype-selective agonists and antagonists, some of which are now in clinical use. This progress and success is a testimony to the foresight, intelligence, enthusiasm and drive of Geoff Burnstock, who led the field forward throughout his scientific life.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Agonistas do Receptor Purinérgico P2X/administração & dosagem , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Agonistas do Receptor Purinérgico P2Y , Antagonistas do Receptor Purinérgico P2Y/administração & dosagem , Transdução de Sinais/efeitos dos fármacos
12.
Purinergic Signal ; 17(2): 167, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398640
13.
Br J Pharmacol ; 178(3): 489-514, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33125712

RESUMO

The known seven mammalian receptor subunits (P2X1-7) form cationic channels gated by ATP. Three subunits compose a receptor channel. Each subunit is a polypeptide consisting of two transmembrane regions (TM1 and TM2), intracellular N- and C-termini, and a bulky extracellular loop. Crystallization allowed the identification of the 3D structure and gating cycle of P2X receptors. The agonist-binding pocket is located at the intersection of two neighbouring subunits. In addition to the mammalian P2X receptors, their primitive ligand-gated counterparts with little structural similarity have also been cloned. Selective agonists for P2X receptor subtypes are not available, but medicinal chemistry supplied a range of subtype-selective antagonists, as well as positive and negative allosteric modulators. Knockout mice and selective antagonists helped to identify pathological functions due to defective P2X receptors, such as male infertility (P2X1), hearing loss (P2X2), pain/cough (P2X3), neuropathic pain (P2X4), inflammatory bone loss (P2X5), and faulty immune reactions (P2X7).


Assuntos
Trifosfato de Adenosina , Animais , Ligantes , Masculino , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2X2
14.
Br J Pharmacol ; 177(11): 2413-2433, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32037507

RESUMO

Eight G protein-coupled P2Y receptor subtypes respond to extracellular adenine and uracil mononucleotides and dinucleotides. P2Y receptors belong to the δ group of rhodopsin-like GPCRs and contain two structurally distinct subfamilies: P2Y1 , P2Y2 , P2Y4 , P2Y6 , and P2Y11 (principally Gq protein-coupled P2Y1 -like) and P2Y12-14 (principally Gi protein-coupled P2Y12 -like) receptors. Brain P2Y receptors occur in neurons, glial cells, and vasculature. Endothelial P2Y1 , P2Y2 , P2Y4 , and P2Y6 receptors induce vasodilation, while smooth muscle P2Y2 , P2Y4 , and P2Y6 receptor activation leads to vasoconstriction. Pancreatic P2Y1 and P2Y6 receptors stimulate while P2Y13 receptors inhibits insulin secretion. Antagonists of P2Y12 receptors, and potentially P2Y1 receptors, are anti-thrombotic agents, and a P2Y2 /P2Y4 receptor agonist treats dry eye syndrome in Asia. P2Y receptor agonists are generally pro-inflammatory, and antagonists may eventually treat inflammatory conditions. This article reviews recent developments in P2Y receptor pharmacology (using synthetic agonists and antagonists), structure and biophysical properties (using X-ray crystallography, mutagenesis and modelling), physiological and pathophysiological roles, and present and potentially future therapeutic targeting.


Assuntos
Agonistas do Receptor Purinérgico P2Y , Antagonistas do Receptor Purinérgico P2Y , Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Neurônios , Receptores Purinérgicos P2Y1
15.
Br J Pharmacol ; 176(16): 2894-2904, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31116875

RESUMO

BACKGROUND AND PURPOSE: There is a lack of potent, selective antagonists at most subtypes of P2Y receptor. The aims of this study were to characterise the pharmacological properties of the proposed P2Y2 receptor antagonist, AR-C118925XX, and then to use it to determine the role of P2Y2 receptors in the action of the P2Y2 agonist, UTP, in human vascular endothelial cells. EXPERIMENTAL APPROACH: Cell lines expressing native or recombinant P2Y receptors were superfused constantly, and agonist-induced changes in intracellular Ca2+ levels monitored using the Ca2+ -sensitive fluorescent indicator, Cal-520. This set-up enabled full agonist concentration-response curves to be constructed on a single population of cells. KEY RESULTS: UTP evoked a concentration-dependent rise in intracellular Ca2+ in 1321N1-hP2Y2 cells. AR-C118925XX (10 nM to 1 µM) had no effect per se on intracellular Ca2+ but shifted the UTP concentration-response curve progressively rightwards, with no change in maximum. The inhibition was fully reversible on washout. AR-C118925XX (1 µM) had no effect at native or recombinant hP2Y1 , hP2Y4 , rP2Y6 , or hP2Y11 receptors. Finally, in EAhy926 immortalised human vascular endothelial cells, AR-C118925XX (30 nM) shifted the UTP concentration-response curve rightwards, with no decrease in maximum. CONCLUSIONS AND IMPLICATIONS: AR-C118925XX is a potent, selective and reversible, competitive P2Y2 receptor antagonist, which inhibited responses mediated by endogenous P2Y2 receptors in human vascular endothelial cells. As the only P2Y2 -selective antagonist currently available, it will greatly enhance our ability to identify the functions of native P2Y2 receptors and their contribution to disease and dysfunction.


Assuntos
Células Endoteliais/efeitos dos fármacos , Furanos/farmacologia , Piperidinas/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/metabolismo , Tetrazóis/farmacologia , Linhagem Celular , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Humanos
16.
J Gerontol A Biol Sci Med Sci ; 74(7): 1031-1042, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-30843026

RESUMO

The year 2017 marked the 20th anniversary of the first publication describing Klotho. This single protein was and is remarkable in that its absence in mice conferred an accelerated aging, or progeroid, phenotype with a dramatically shortened life span. On the other hand, genetic overexpression extended both health span and life span by an impressive 30%. Not only has Klotho deficiency been linked to a number of debilitating age-related illnesses but many subsequent reports have lent credence to the idea that Klotho can compress the period of morbidity and extend the life span of both model organisms and humans. This suggests that Klotho functions as an integrator of organ systems, making it both a promising tool for advancing our understanding of the biology of aging and an intriguing target for interventional studies. In this review, we highlight advances in our understanding of Klotho as well as key challenges that have somewhat limited our view, and thus translational potential, of this potent protein.


Assuntos
Envelhecimento/genética , Glucuronidase , Longevidade/fisiologia , Animais , Senescência Celular/fisiologia , Glucuronidase/genética , Glucuronidase/metabolismo , Humanos , Proteínas Klotho , Camundongos , Pesquisa Translacional Biomédica
17.
Sci Signal ; 11(561)2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563865

RESUMO

Blood flow, blood clotting, angiogenesis, vascular permeability, and vascular remodeling are each controlled by a large number of variable, noisy, and interacting chemical inputs to the vascular endothelium. The endothelium processes the entirety of the chemical composition to which the cardiovascular system is exposed, carrying out sophisticated computations that determine physiological output. Processing this enormous quantity of information is a major challenge facing the endothelium. We analyzed the responses of hundreds of endothelial cells to carbachol (CCh) and adenosine triphosphate (ATP) and found that the endothelium segregates the responses to these two distinct components of the chemical environment into separate streams of complementary information that are processed in parallel. Sensitivities to CCh and ATP mapped to different clusters of cells, and each agonist generated distinct signal patterns. The distinct signals were features of agonist activation rather than properties of the cells themselves. When there was more than one stimulus present, the cells communicated and combined inputs to generate new distinct signals that were nonlinear combinations of the inputs. Our results demonstrate that the endothelium is a structured, collaborative sensory network that simplifies the complex environment using separate cell clusters that are sensitive to distinct aspects of the overall biochemical environment and interactively compute signals from diverse but interrelated chemical inputs. These features enable the endothelium to selectively process separate signals and perform multiple computations in an environment that is noisy and variable.


Assuntos
Cálcio/metabolismo , Artérias Carótidas/fisiologia , Comunicação Celular , Endotélio Vascular/fisiologia , Receptores Colinérgicos/metabolismo , Receptores Purinérgicos/metabolismo , Animais , Artérias Carótidas/citologia , Células Cultivadas , Endotélio Vascular/citologia , Masculino , Ratos , Ratos Sprague-Dawley
18.
Eur J Pharmacol ; 837: 45-52, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30170065

RESUMO

The endogenous nucleotide, UTP, acts at smooth muscle P2Y receptors to constrict rat pulmonary and tail arteries, but the underlying signalling pathways are poorly understood. The aim was to characterise the contribution of Ca2+ release and influx, rho kinase and protein kinase C to these contractions. Isometric tension was recorded from endothelium-denuded rat intralobar pulmonary and tail artery rings mounted on a wire myograph. Contractions were evoked by UTP and peak amplitude measured. Thapsigargin (1 µM), but not ryanodine (10 µM), significantly depressed contractions in both by 30-40% (P < 0.05). Nifedipine (1 µM) significantly reduced contractions in tail artery by ~60% (P < 0.01). Y27632 (10 µM), a rho kinase inhibitor and GF109203X (10 µM), a protein kinase C inhibitor, each significantly reduced pulmonary vasoconstriction by ~20%, and tail artery contractions by ~80% and ~40%, respectively (P < 0.01). In pulmonary artery, Y27632, GF109203X and thapsigargin, acted in an additive manner, but nifedipine less so. Adding all four together abolished the UTP response. In tail artery, Y27632 plus thapsigargin or GF109203X or nifedipine abolished contractions. Thapsigargin, GF109203X and nifedipine, coapplied pair-wise, acted additively and applying all three together abolished UTP-evoked contractions. So, Ca2+ release from the sarcoplasmic reticulum and influx through Cav1.2 channels, but not ryanodine receptors, play significant roles in UTP-evoked vasoconstriction of rat pulmonary and tail arteries. Rho kinase and protein kinase C are also involved, but more so in tail artery. Thus UTP activates multiple signalling mechanisms that lead to vasoconstriction, but their relative importance differs in pulmonary compared with systemic arteries.


Assuntos
Artéria Pulmonar/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Uridina Trifosfato/farmacologia , Vasoconstrição/efeitos dos fármacos , Amidas/farmacologia , Animais , Cálcio/metabolismo , Indóis/farmacologia , Masculino , Maleimidas/farmacologia , Nifedipino/farmacologia , Proteína Quinase C/fisiologia , Artéria Pulmonar/fisiologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Rianodina/farmacologia , Tapsigargina/farmacologia
19.
Adv Exp Med Biol ; 1051: 107-122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29134605

RESUMO

The P2Y11 receptor is a G protein-coupled receptor that is stimulated by endogenous purine nucleotides, particularly ATP. Amongst P2Y receptors it has several unique properties; (1) it is the only human P2Y receptor gene that contains an intron in the coding sequence; (2) the gene does not appear to be present in the rodent genome; (3) it couples to stimulation of both phospholipase C and adenylyl cyclase. Its absence in mice and rats, along with a limited range of selective pharmacological tools, has hampered the development of our knowledge and understanding of its properties and functions. Nonetheless, through a combination of careful use of the available tools, suppression of receptor expression using siRNA and genetic screening for SNPs, possible functions of native P2Y11 receptors have been identified in a variety of human cells and tissues. Many are in blood cells involved in inflammatory responses, consistent with extracellular ATP being a damage-associated signalling molecule in the immune system. Thus proposed potential therapeutic applications relate, in the main, to modulation of acute and chronic inflammatory responses.


Assuntos
Trifosfato de Adenosina/metabolismo , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Receptores Purinérgicos P2 , Trifosfato de Adenosina/genética , Animais , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Íntrons , Camundongos , Especificidade de Órgãos , Ratos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Especificidade da Espécie
20.
J Biol Chem ; 292(28): 11618-11630, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28546429

RESUMO

The nuclear receptor retinoid acid receptor-related orphan receptor γt (RORγt) is a master regulator of the Th17/IL-17 pathway that plays crucial roles in the pathogenesis of autoimmunity. RORγt has recently emerged as a highly promising target for treatment of a number of autoimmune diseases. Through high-throughput screening, we previously identified several classes of inverse agonists for RORγt. Here, we report the crystal structures for the ligand-binding domain of RORγt in both apo and ligand-bound states. We show that apo RORγt adopts an active conformation capable of recruiting coactivator peptides and present a detailed analysis of the structural determinants that stabilize helix 12 (H12) of RORγt in the active state in the absence of a ligand. The structures of ligand-bound RORγt reveal that binding of the inverse agonists disrupts critical interactions that stabilize H12. This destabilizing effect is supported by ab initio calculations and experimentally by a normalized crystallographic B-factor analysis. Of note, the H12 destabilization in the active state shifts the conformational equilibrium of RORγt toward an inactive state, which underlies the molecular mechanism of action for the inverse agonists reported here. Our findings highlight that nuclear receptor structure and function are dictated by a dynamic conformational equilibrium and that subtle changes in ligand structures can shift this equilibrium in opposite directions, leading to a functional switch from agonists to inverse agonists.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Agonismo Inverso de Drogas , Modelos Moleculares , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Ligação Competitiva , Células Cultivadas , Genes Reporter/efeitos dos fármacos , Células HEK293 , Humanos , Interleucina-17/antagonistas & inibidores , Interleucina-17/metabolismo , Ligantes , Conformação Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/farmacologia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Redobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...